MATH 320 NOTES, WEEKS 12 AND 13

So, far we know that if $A \in M_{n, n}(F)$, the following are equivalent:
(1) A is invertible.
(2) $\operatorname{rank}(A)=n$.
(3) $A x=\mathbf{0}$ has only the trivial solution.
(4) $A x=\mathbf{b}$ has a unique solution for every \mathbf{b}.

Next we will define the determinant of a matrix, $\operatorname{det}(A) \in F$, and show that the above hold iff $\operatorname{det}(A) \neq 0$. So, computing the determinant will be one more way of deciding if A is invertible.

Section 4.1 Determinants of order 2

Definition 1. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. The determinant of A is $\operatorname{det}(A)=a d-b c$.
Some remarks:
(1) $\operatorname{det}\left(I_{2}\right)=1$, the determinant of the zero matrix is 0 .
(2) If A has a zero row or a zero column, $\operatorname{det}(A)=0$.
(3) If the row of A are multiples of each other, then $\operatorname{det}(A)=0$. That's because if $a=k c, b=k d$, we have $a d-b c=k c d-k d c=0$.
It turns out that the converse of the last item is also true:
Theorem 2. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Then A is invertible iff $\operatorname{det}(A) \neq 0$.
Proof. The easy direction: If A is not invertible, then $\operatorname{rank}(A)<2$, so the rows are linearly dependent, so they are multiples of each other, and so by the above note, $\operatorname{det}(A)=0$.

Now for the harder direction: If A is invertible, then $\operatorname{rank}(A)=2$, and so A cannot have a zero row. So, $a \neq 0$ or $b \neq 0$ (or both). Suppose $a \neq 0$ (the other case is similar). Then by the type 3 elementary row operation, $R_{2}-\frac{c}{a} R_{1}$, we obtain the matrix

$$
B=\left(\begin{array}{cc}
a & b \\
0 & d-\frac{c b}{a}
\end{array}\right)
$$

Since elementary row operations preserve the rank, we have that $\operatorname{rank}(B)=$ $\operatorname{rank}(A)=2$, and so B is invertible. Then B cannot have a row of zeros. It follows that $d-\frac{c b}{a} \neq 0$, and so $d a \neq c b$. Then $\operatorname{det}(A)=a d-c b \neq 0$.

Lemma 3. Suppose $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is invertible. Then $A^{-1}=\frac{1}{\operatorname{det}(A)}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$

Proof. Calculate $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \frac{1}{\operatorname{det}(A)}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)=\frac{1}{\operatorname{det}(A)}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)=$ $\frac{1}{\operatorname{det}(A)}\left(\begin{array}{cc}a d-b c & 0 \\ 0 & a d-b c\end{array}\right)=I_{2}$

As a function det : $M_{2,2}(F) \rightarrow F$ is not a linear transformation, but it is something close.
Lemma 4. The function det : $M_{2,2}(F) \rightarrow F$ is a linear function of each row, when the other one is fixed:

- $\operatorname{det}\left(\begin{array}{cc}a_{1}+a_{2} & b_{1}+b_{2} \\ c & d\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}a_{1} & b_{1} \\ c & d\end{array}\right)+\operatorname{det}\left(\begin{array}{cc}a_{2} & b_{2} \\ c & d\end{array}\right)$.
- $\operatorname{det}\left(\begin{array}{cc}k a & k b \\ c & d\end{array}\right)=k \operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.

Similarly, if we fix the first row.

Section 4.2 Determinants of order n.

First let us introduce some notation. Let $A \in M_{n \times n}(F)$. We will denote the (i, j)-th entry by $a_{i j}$. Also, given $1 \leq i, j \leq n$, let $\bar{A}_{i j} \in M_{n-1 \times n-1}(F)$ be the submatrix obtained by removing the i-th row and the j-th column of A.

Definition 5. Let $A \in M_{n \times n}(F)$. If $n=1, \operatorname{det}(A)=A=a_{11}$. If $n>1$, then

$$
\operatorname{det}(A)=\sum_{k=1}^{n}(-1)^{k+1} a_{1 k} \cdot \operatorname{det}\left(\bar{A}_{1 k}\right)
$$

Note that this definition is by induction on n. I.e. we assume we know the definition of determinant of dimension $(n-1) \times(n-1)$, and use it to define the determinant in the case of dimension $n \times n$. Also, the above formula is computing the determinant of A along the first row. Later we will see that we can compute it along any row or column.

Exercise: Verify that for $n=2$, the above formula gives the same definition as in the last section.

The next lemma is the generalization of Lemma 4 for n by n matrices.
Lemma 6. The function det : $M_{n \times n}(F) \rightarrow F$ is a linear function of each row, when the other ones are fixed. More precisely,

$$
\operatorname{det}\left(\begin{array}{c}
\mathbf{a}_{\mathbf{1}} \\
\vdots \\
\mathbf{a}_{\mathbf{r}-\mathbf{1}} \\
\mathbf{u}+d \mathbf{v} \\
\mathbf{a}_{\mathbf{r}+\mathbf{1}} \\
\vdots \\
\mathbf{a}_{\mathbf{n}}
\end{array}\right)=\operatorname{det}\left(\begin{array}{c}
\mathbf{a}_{\mathbf{1}} \\
\vdots \\
\mathbf{a}_{\mathbf{r}-\mathbf{1}} \\
\mathbf{u} \\
\mathbf{a}_{\mathbf{r}+\mathbf{1}} \\
\vdots \\
\mathbf{a}_{\mathbf{n}}
\end{array}\right)+d \operatorname{det}\left(\begin{array}{c}
\mathbf{a}_{\mathbf{1}} \\
\vdots \\
\mathbf{a}_{\mathbf{r}-\mathbf{1}} \\
\mathbf{v} \\
\mathbf{a}_{\mathbf{r}+\mathbf{1}} \\
\vdots \\
\mathbf{a}_{\mathbf{n}}
\end{array}\right) .
$$

Proof. The proof is by induction on n. If $n=1$, it is clear, so suppose $n>1$.
Let $A=\left(\begin{array}{c}\mathbf{a}_{\mathbf{1}} \\ \vdots \\ \mathbf{a}_{\mathbf{r}-\mathbf{1}} \\ \mathbf{u}+d \mathbf{v} \\ \mathbf{a}_{\mathbf{r}+\mathbf{1}} \\ \vdots \\ \mathbf{a}_{\mathbf{n}}\end{array}\right) ; B=\left(\begin{array}{c}\mathbf{a}_{\mathbf{1}} \\ \vdots \\ \mathbf{a}_{\mathbf{r}-\mathbf{1}} \\ \mathbf{u} \\ \mathbf{a}_{\mathbf{r}+\mathbf{1}} \\ \vdots \\ \mathbf{a}_{\mathbf{n}}\end{array}\right) ; C=\left(\begin{array}{c}\mathbf{a}_{\mathbf{1}} \\ \vdots \\ \mathbf{a}_{\mathbf{r}-\mathbf{1}} \\ \mathbf{v} \\ \mathbf{a}_{\mathbf{r}+\mathbf{1}} \\ \vdots \\ \mathbf{a}_{\mathbf{n}}\end{array}\right)$
We want to show that $\operatorname{det}(A)=\operatorname{det}(B)+d \operatorname{det}(C)$. There are two cases.
Case 1. $r=1$. Then, by our definition, $\operatorname{det}(A)=$

$$
\sum_{k=1}^{n}(-1)^{k+1} a_{1 k} \cdot \operatorname{det}\left(\bar{A}_{1 k}\right)=\sum_{k=1}^{n}(-1)^{k+1}\left(b_{1 k}+d c_{1 k}\right) \cdot \operatorname{det}\left(\bar{A}_{1 k}\right)=
$$

$\Sigma_{k=1}^{n}(-1)^{k+1} b_{1 k} \cdot \operatorname{det}\left(\bar{A}_{1 k}\right)+d \Sigma_{k=1}^{n}(-1)^{k+1} c_{1 k} \cdot \operatorname{det}\left(\bar{A}_{1 k}\right)=\operatorname{det}(B)+d \operatorname{det}(C)$
Note that here for every $k, \bar{A}_{1 k}=\bar{C}_{1 k}=\bar{B}_{1 k}$, because the only difference in the matrices A, B, and C is the the first row.

Case 2. $r>1$. Then $\operatorname{det}(A)=\Sigma_{k=1}^{n}(-1)^{k+1} a_{1 k} \cdot \operatorname{det}\left(\bar{A}_{1 k}\right)$ and by the inductive hypothesis, for each k,

$$
\operatorname{det}\left(\bar{A}_{1 k}\right)=\operatorname{det}\left(\bar{B}_{1 k}\right)+d \operatorname{det}\left(\bar{C}_{1 k}\right)
$$

This is because, the submatrices have dimension $(n-1) \times(n-1)$, and the $(r-1)$-th row of $\bar{A}_{1 k}$ equals the $(r-1)$-th row of $\bar{B}_{1 k}$ plus d times the $(r-1)$-th row of $\bar{C}_{1 k}$. Plugging in, we have,
$\operatorname{det}(A)=$
$=\Sigma_{k=1}^{n}(-1)^{k+1} a_{1 k} \cdot\left(\operatorname{det}\left(\bar{B}_{1 k}\right)+d \operatorname{det}\left(\bar{C}_{1 k}\right)\right)=$
$=\Sigma_{k=1}^{n}(-1)^{k+1} a_{1 k} \cdot \operatorname{det}\left(\bar{B}_{1 k}\right)+d \Sigma_{k=1}^{n}(-1)^{k+1} a_{1 k} \cdot \operatorname{det}\left(\bar{C}_{1 k}\right)=$
$=\operatorname{det}(B)+d \operatorname{det}(C)$.
Corollary 7. If A has a row of zeros, then $\operatorname{det}(A)=0$.
Proof. Say the r-th row of A has only zeros, i.e. this row is $\mathbf{0}=0 \cdot \mathbf{0}$. Then by the above lemma applied to row r, we have that $\operatorname{det}(A)=0 \cdot \operatorname{det}(A)=0$.

Our next goal is to show that we can compute the determinant by expanding along any row. First we show it in the simplest case - when the row in question is of the form e_{k}, for some k, i.e. the vector with 1 in the k-th coordinate and 0 s everywhere else.

Lemma 8. Let $A \in M_{n \times n}(F)$ and suppose that the r-th row of A is e_{k}. Here $1 \leq k, r \leq n$ and $1<n$. Then $\operatorname{det}(A)=(-1)^{r+k} \operatorname{det}\left(\bar{A}_{r k}\right)$.
Proof. By induction on n. For $n=2$, it is an exercise to verify it.
Suppose $n>2$, and we have the result for smaller dimensions. Again we divide it into two cases.

Case 1. $k=1$. Then $a_{1 k}=1$ and for all $j \neq k, a_{1 j}=0$. So by the formula for the determinant, we have $\operatorname{det}(A)=(-1)^{1+k} \operatorname{det}\left(\bar{A}_{1 k}\right)=$ $(-1)^{r+k} \operatorname{det}\left(\bar{A}_{r k}\right)$.

Case 2. $k>1$. Then by the inductive hypothesis for each submatrix $\bar{A}_{1 j}$,

- if $j=k$, the $r-1$-th row is $\mathbf{0}$ (because we have removed the k-th column on A). Then $\operatorname{det}\left(\bar{A}_{1 k}\right)=0$ by the above corollary.
- if $j \neq k$, the $r-1$-th row is e_{k} (with one less dimension). Then, by induction,
(1) $\operatorname{det}\left(\bar{A}_{1 j}\right)=(-1)^{r-1+k-1} \operatorname{det}\left(C_{r j}\right)$, if $j<k$
(2) $\operatorname{det}\left(\bar{A}_{1 j}\right)=(-1)^{r-1+k} \operatorname{det}\left(C_{r j}\right)$, if $j>k$
where $C_{r j}$ is the submatrix of $\bar{A}_{1 j}$ by removing the r-th row and j-th column of $\bar{A}_{1 j}$.
When we plug this information if the formula for the determinant, after some computation, we get the desired result. For details, see pg 214 in the textbook.

Now we can finally prove a very useful fact about determinants: the we can compute them by expanding along any row of A.

Theorem 9. Let $A \in M_{n \times n}(F)$, and let $1 \leq i \leq n$. We can compute $\operatorname{det}(A)$ by expanding along row i as follows: $\operatorname{det}(A)=\Sigma_{j=1}^{n}(-1)^{i+j} a_{i k} \cdot \operatorname{det}\left(\bar{A}_{i j}\right)$.
Proof. Denote the i-th row of A by $a_{i}=\left\langle a_{i 1}, a_{i 2}, \ldots, a_{i n}\right\rangle=a_{i 1} e_{1}+\ldots+a_{i n} e_{n}$. Fir each $j \leq n$, let $B_{j} \in M_{n \times n}(F)$ be the matrix obtained by replacing a_{i} with e_{j}, i.e. A and B_{j} differ only in row i. (For example the i th row of B_{1} is $\langle 1,0, \ldots, 0\rangle$ and every other row is like in A.)

By Lemma 8, we have that for each j, $\operatorname{det}\left(B_{j}\right)=(-1)^{i+j} \operatorname{det}\left(\overline{\left(B_{j}\right)_{i j}}\right)$. Since $\overline{\left(B_{j}\right)}$ ij is obtained from B_{j} by removing the i-th row and the j-column. Since the only difference between A and each B_{j} is in the i-th row, it follows that $\overline{(B j)}_{i j}=\bar{A}_{i j}$. Plugging in, we get

$$
\operatorname{det}\left(B_{j}\right)=(-1)^{i+j} \operatorname{det}\left(\bar{A}_{i j}\right)
$$

Then, by linearity (Lemma 6), we have that

$$
\operatorname{det}(A)=\sum_{j=1}^{n} a_{i j} \operatorname{det}\left(B_{j}\right)=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det}\left(\bar{A}_{i j}\right)
$$

Using the above theorem, next we will show what effect doing elementary row operations have on the determinant of a matrix.

Lemma 10. (Elementary row operations and the determinant) Suppose $A \in$ $M_{n \times n}(F)$ and B is obtained from A by doing one elementary row operation.
(1) (Type 1) If B is obtained from A by interchanging two rows, then $\operatorname{det}(B)=-\operatorname{det}(A)$.
(2) (Type 2) If B is obtained from A by multiplying one row by k, then $\operatorname{det}(B)=k \operatorname{det}(A)$.
(3) (Type 3) If B is obtained from A by adding a multiple of one row to another, then $\operatorname{det}(B)=\operatorname{det}(A)$.
Proof. Part 1. By induction on n. If $n=2$, it is a straightforward calculation. Suppose that we interchange rows r and k. Let $i<n, i \neq r, i \neq k$. Expanding along row i, we get, $\operatorname{det}(B)=\sum_{j=1}^{n}(-1)^{i+j} b_{i j} \operatorname{det}\left(\bar{B}_{i j}\right)$.

Now, for each $j, \bar{B}_{i j}$, is obtained from $\bar{A}_{i j}$ by interchanging rows r and k, and so by induction, $\operatorname{det}\left(\bar{B}_{i j}\right)=-\operatorname{det}\left(\bar{A}_{i j}\right)$. Also, since the i-th row of A and B are the same, we have that $a_{i j}=b_{i j}$ for all $j \leq n$. So,

$$
\begin{gathered}
\operatorname{det}(B)=\Sigma_{j=1}^{n}(-1)^{i+j} b_{i j} \operatorname{det}\left(\bar{B}_{i j}\right)=\Sigma_{j=1}^{n}(-1)^{i+j} a_{i j}\left(-\operatorname{det}\left(\bar{A}_{i j}\right)\right)= \\
-\Sigma_{j=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det}\left(\bar{A}_{i j}\right)=-\operatorname{det}(A)
\end{gathered}
$$

Part 2. Suppose that B is obtained by multiplying row i by k. Expanding along row i, we have that

$$
\begin{gathered}
\operatorname{det}(B)=\Sigma_{j=1}^{n}(-1)^{i+j} b_{i j} \operatorname{det}\left(\bar{B}_{i j}\right)= \\
\sum_{j=1}^{n}(-1)^{i+j} k a_{i j} \operatorname{det}\left(\bar{A}_{i j}\right)=k \Sigma_{j=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det}\left(\bar{A}_{i j}\right)=k \operatorname{det}(A) .
\end{gathered}
$$

Here $\bar{A}_{i j}=\bar{B}_{i j}$, because we only changed row i.
Part 3. Again, this is by induction on n. Suppose B is obtained from A by adding a multiple of row r to row k. If $n=2$, this can be verified directly. Otherwise, let $i \leq n, i \neq r, i \neq k$. Then for all $j \leq n, \bar{B}_{i j}$ is obtained from $\bar{A}_{i j}$ by adding the same multiple of of row r to row k. So, by induction, $\operatorname{det}\left(\bar{B}_{i j}\right)=\operatorname{det}\left(\bar{A}_{i j}\right)$. Expanding along row i, we have that

$$
\operatorname{det}(B)=\Sigma_{j=1}^{n}(-1)^{i+j} b_{i j} \operatorname{det}\left(\bar{B}_{i j}\right)=\Sigma_{j=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det}\left(\bar{A}_{i j}\right)=\operatorname{det}(A)
$$

The following is an immediate corollary:
Corollary 11. If $A, B \in M_{n \times n}(F)$ are such that B is obtained from A by doing elementary row operations, then $\operatorname{det}(B)=0$ iff $\operatorname{det}(A)=0$.

Theorem 12. Let $A \in M_{n \times n}$. Then $\operatorname{det}(A)=0$ iff $\operatorname{rank}(A)<n$ iff A is not invertible.

Proof. We already know that $\operatorname{rank}(A)<n$ iff A is not invertible from previous sections. So, we just have to show this is equivalent to $\operatorname{det}(A)=0$.

For one direction, suppose $\operatorname{rank}(A)<n$. Then its rows must be linearly dependent, so there is some row, say row i, which can be written as a linear combination of the other rows. Then by doing type 3 elementary row operations, adding multiples of other rows to row i, we obtain a matrix B from A, such that the i-th row of B is all zeros. Then $\operatorname{det}(B)=0$. But since doing type 3 elementary row operations don't change the determinant, we also have $\operatorname{det}(A)=0$.

For the other direction, suppose that $\operatorname{rank}(A)=n$. Then by doing elementary row operations, we can obtain I_{n} from A. Since $\operatorname{det}\left(I_{n}\right)=1 \neq 0$, then $\operatorname{det}(A) \neq 0$.

Section 4.3 A couple of more properties of the determinant.

We start with two lemmas that follow from the effect of doing elementary row operations on the determinant.

Lemma 13. Suppose that E is an elementary row matrix.
(1) (Type 1) If E is obtained by interchanging two rows of I_{n}, then $\operatorname{det}(E)=-1$;
(2) (Type 2) If E is obtained from I_{n} by multiplying a row by k, then $\operatorname{det}(E)=k ;$
(3) (Type 3) If E is obtained from I_{n} by adding a multiple of one row to another, then $\operatorname{det}(E)=1$;

Proof. The proof is immediate using Lemma 9 and that $\operatorname{det}\left(I_{n}\right)=1$.
Lemma 14. Suppose that $A=E B$, where E is an elementary (row) matrix, then $\operatorname{det}(A)=\operatorname{det}(E) \cdot \operatorname{det}(B)$

Proof. (1) (Type 1) If E is obtained by interchanging two rows of I_{n}, then $\operatorname{det}(E)=-1$ and A is obtained from B by interchanging the same two rows. So

$$
\operatorname{det}(A)=-\operatorname{det}(B)=\operatorname{det}(E) \cdot \operatorname{det}(B) ;
$$

(2) (Type 2) If E is obtained from I_{n} by multiplying a row by $k, \operatorname{det}(E)=$ k and A is obtained from B by multiplying the same row by k. So

$$
\operatorname{det}(A)=k \operatorname{det}(B)=\operatorname{det}(E) \cdot \operatorname{det}(B) ;
$$

(3) (Type 3) If E is obtained from I_{n} by adding a multiple of one row to another, then $\operatorname{det}(E)=1$ and A is obtained from B by same operation. So

$$
\operatorname{det}(A)=\operatorname{det}(B)=\operatorname{det}(E) \cdot \operatorname{det}(B) ;
$$

And now, for the main theorem about matrix multiplication and the determinant:

Theorem 15. Suppose that $A, B \in M_{n \times n}(F)$. Then

$$
\operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B)
$$

Note that this also means that $\operatorname{det}(A B)=\operatorname{det}(B A)$, although of course in general $A B \neq B A$.

Proof. Case $1 \operatorname{det}(A)=0$. Then $\operatorname{rank}(A B) \leq \operatorname{rank}(A)<n$, and so $\operatorname{det}(A B)=0$. The. $\operatorname{det}(A B)=0=\operatorname{det}(A) \cdot \operatorname{det}(B)$.

Case $2 \operatorname{det}(A) \neq 0$. Then A is invertible. And so it is the products of elementary matrices. (We can assume these are row elementary). Write $A=E_{1} \ldots E_{k}$ where each E_{i} is elementary. Then

$$
\begin{gathered}
\operatorname{det}(A B)=\operatorname{det}\left(E_{1} \cdot \ldots E_{k} \cdot B\right)=\operatorname{det}\left(E_{1}\right) \operatorname{det}\left(\left(E_{2} \cdot \ldots E_{k} \cdot B\right)=\ldots\right. \\
\operatorname{det}\left(E_{1}\right) \operatorname{det}\left(E_{2}\right) \cdot \ldots \operatorname{det}\left(E_{k}\right) \cdot \operatorname{det}(B)=\operatorname{det}\left(E_{1} \cdot \ldots E_{k}\right) \operatorname{det}(B)=\operatorname{det}(A) \operatorname{det}(B) .
\end{gathered}
$$

Corollary 16. If A is invertible, $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.
Proof. Exercise.
Finally, we note that the lemmas about elementary row operations and the determinant also hold for column operations. I.e. we have:

Fact 17. Suppose that B is obtained from A by doing one elementary column operation. Say $B=A E$, where E is an elementary column matrix. Then, if E is of:
(1) Type 1, interchanging two rows: $\operatorname{det}(E)=-1$, $\operatorname{det}(B)=-1 \operatorname{det}(A)$;
(2) Type 2, multiplying a row by $k: \operatorname{det}(E)=k$, $\operatorname{det}(B)=k \operatorname{det}(A)$;
(3) Type 3: $\operatorname{det}(E)=1, \operatorname{det}(B)=\operatorname{det}(A)$.

In particular, if E is an elementary matrix (row or column), then

$$
\operatorname{det}(E)=\operatorname{det}\left(E^{t}\right)
$$

We leave the proof as an exercise.
Lemma 18. $\operatorname{det}\left(A^{t}\right)=\operatorname{det}(A)$.
Proof. If A is not invertible, then $\operatorname{det}(A)=0$, and $n>\operatorname{rank}(A)=\operatorname{rank}\left(A^{t}\right)$, so A^{t} is not invertible and $\operatorname{det}\left(A^{t}\right)=0$.

If A is invertible, then $A=E_{1} \cdot \ldots \cdot E_{k}$, where each E_{i} is elementary. So

$$
A^{t}=\left(E_{1} \cdot \ldots \cdot E_{k}\right)^{t}=E_{k}^{t} \cdot \ldots \cdot E_{1}^{t}
$$

and for each $i \leq k, \operatorname{det}\left(E_{i}^{t}\right)=\operatorname{det}\left(E_{i}\right)$. Then,

$$
\operatorname{det}\left(A^{t}\right)=\operatorname{det}\left(E_{k}^{t} \cdot \ldots \cdot E_{1}^{t}\right)=\operatorname{det}\left(E_{k}^{t}\right) \cdot \ldots \cdot \operatorname{det}\left(E_{1}^{t}\right)=\operatorname{det}\left(E_{k}\right) \cdot \ldots \cdot \operatorname{det}\left(E_{1}\right)=\operatorname{det}(A)
$$

